Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 752
Filter
1.
Curr Microbiol ; 81(6): 158, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658428

ABSTRACT

Enterobacter cloacae complex (ECC) widely exists in the hospital environment and is one of the important conditional pathogens of hospital-acquired infection. To investigate the distribution of integrons and carbapenem-resistant genes in clinical ECC, 70 isolates of ECC from non-sputum specimens were collected. Class 1 and class 2 integron integrase gene intI1 and intI2, as well as common carbapenem-resistant genes, blaKPC, blaVIM, blaIMP, blaNDM, blaGES, and blaOXA-23, were screened. Gene cassette arrays and common promoters of class 1 integron together with subtypes of carbapenem-resistant genes were determined by sequencing. Resistant rates to commonly used antimicrobial agents between class 1 integron-positive and integron-negative ECC isolates were analyzed. The whole-genome of blaNDM-7 harboring Enterobacter hormaechei was sequenced and the sequence around blaNDM-7 was analyzed. Twenty isolates were positive for intI1. Nineteen different antimicrobial-resistant gene cassettes and 11 different gene cassette arrays, including aadA22-lnuF, were detected in this study. Common promoters of class 1 integron PcH1, PcW, PcW-P2, and PcH2 were detected in 12, 4, 3, and 1 isolates, respectively. The rates of antimicrobial resistance of intI1-positive isolates were higher than those of intI1-negative isolates to clinical commonly used antimicrobial agents. Carbapenem-resistant genes blaKPC-2, blaNDM-1, blaNDM-2, and blaNDM-7 were detected in 2, 1, 1, and 1 isolates, respectively. blaNDM-7 was located between bleMBL and IS5. To the best of our knowledge, this study reported for the first time of blaNDM-7 in ECC isolate in China.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Enterobacter cloacae , Enterobacteriaceae Infections , Integrons , Integrons/genetics , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Humans , beta-Lactamases/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , China
2.
Front Cell Infect Microbiol ; 14: 1328123, 2024.
Article in English | MEDLINE | ID: mdl-38481664

ABSTRACT

Background: An outbreak of multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae infections in a neonatal ward within a tertiary hospital in South Africa resulted in the mortality of 10 patients within six months. In this work, the genomic epidemiology of and the molecular factors mediating this outbreak were investigated. Methods: Bacterial cultures obtained from clinical samples collected from the infected neonates underwent phenotypic and molecular analyses to determine their species, sensitivity to antibiotics, production of carbapenemases, complete resistance genes profile, clonality, epidemiology, and evolutionary relationships. Mobile genetic elements flanking the resistance genes and facilitating their spread were also characterized. Results: The outbreak was centered in two major wards and affected mainly neonates between September 2019 and March 2020. Most isolates (n = 27 isolates) were K. pneumoniae while both E. coli and E. cloacae had three isolates each. Notably, 33/34 isolates were multidrug resistant (MDR), with 30 being resistant to at least four drug classes. All the isolates were carbapenemase-positive, but four bla OXA-48 isolates were susceptible to carbapenems. Bla NDM-1 (n = 13) and bla OXA-48/181 (n = 15) were respectively found on IS91 and IS6-like IS26 composite transposons in the isolates alongside several other resistance genes. The repertoire of resistance and virulence genes, insertion sequences, and plasmid replicon types in the strains explains their virulence, resistance, and quick dissemination among the neonates. Conclusions: The outbreak of fatal MDR infections in the neonatal wards were mediated by clonal (vertical) and horizontal (plasmid-mediated) spread of resistant and virulent strains (and genes) that have been also circulating locally and globally.


Subject(s)
Enterobacteriaceae Infections , Klebsiella pneumoniae , Infant, Newborn , Humans , Escherichia coli/genetics , Enterobacter cloacae/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Molecular Epidemiology , South Africa/epidemiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Tertiary Care Centers , Disease Outbreaks , Microbial Sensitivity Tests
3.
Antimicrob Agents Chemother ; 68(5): e0167223, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517188

ABSTRACT

Carbapenemase-producing Enterobacterales (CPEs) are one of the top priority antimicrobial-resistant pathogens. Among CPEs, those producing acquired metallo-ß-lactamases (MBLs) are considered particularly problematic as few agents are active against them. Imipenemase (IMP) is the most frequently encountered acquired MBL in Japan, but comprehensive assessment of clinical and microbiological features of IMP-producing Enterobacterales infection remains scarce. Here, we retrospectively evaluated 62 patients who were hospitalized at a university hospital in Japan and had IMP-producing Enterobacterales from a clinical culture. The isolates were either Enterobacter cloacae complex or Klebsiella pneumoniae, and most of them were isolated from sputum. The majority of K. pneumoniae, but not E. cloacae complex isolates, were susceptible to aztreonam. Sequence type (ST) 78 and ST517 were prevalent for E. cloacae complex and K. pneumoniae, respectively, and all isolates carried blaIMP-1. Twenty-four of the patients were deemed infected with IMP-producing Enterobacterales. Among the infected patients, therapy varied and largely consisted of conventional ß-lactam agents, fluoroquinolones, or combinations. Three (13%), five (21%), and nine (38%) of them died by days 14, 30, and 90, respectively. While incremental mortality over 90 days was observed in association with underlying comorbidities, active conventional treatment options were available for most patients with IMP-producing Enterobacterales infections, distinguishing them from more multidrug-resistant CPE infections associated with globally common MBLs, such as New Delhi metallo-ß-lactamase (NDM) and Verona integron-encoded metallo-ß-lactamase (VIM).


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterobacter cloacae , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Humans , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Male , Retrospective Studies , Female , Middle Aged , Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Aztreonam/pharmacology , Aztreonam/therapeutic use , Japan , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Aged, 80 and over , Adult
4.
Microbiol Spectr ; 12(4): e0352923, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38385742

ABSTRACT

Blood-borne infections caused by the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) are major public threats with respect to the challenges encountered during treatment. This study describes the whole genome sequencing-based molecular characteristics of blood isolates (n = 70) of CR-ECC from patients admitted to the intensive care unit of tertiary care hospitals in Kolkata, India, during 2017-2022 with respect to species identification, antimicrobial resistance (AMR) profiling, mechanism of drug resistance, and molecular subtypes. Vitek2 MALDI and species-specific PCR identified Enterobacter hormaechei subsp. xiangfangensis (47.14%) as the emerging CR-ECC subspecies in Kolkata. The predominating carbapenemase and extended-spectrum ß-lactamase genes found were blaNDM-1 (51.42%) and blaCTX-M-15 (27%), respectively. Besides, blaNDM-4, blaNDM-5, blaNDM-7, blaCMH-3, blaSFO-1, blaOXA-181, blaOXA-232, blaKPC-3, and blaDHA-7 genes were also detected, which were not previously reported from India. A multitude of Class 1 integrons (including In180, In4874, In4887, and In4888, which were novel) and plasmid replicon types (IncFIB, IncFII, IncX3, IncHI1-HI2, IncC, and IncR) involved in AMR dissemination were identified. Reverse transcription-PCR and western blot revealed that carbapenem resistance in non-carbapenemase-producing CR-ECC isolates was contributed by elevated levels of ampC, overexpression of acrAB, and loss of ompF. A total of 30 distinct sequence types (STs) were ascertained by multi-locus sequence typing; of which, ST2011, ST2018, ST2055, ST2721, and ST2722 were novel STs. Pulsed-field gel electrophoresis analysis showed heterogeneity (69 pulsotypes with a similarity coefficient of 48.40%) among the circulating isolates, suggesting multiple reservoirs of infections in humans. Phylogenetically and genetically diverse CR-ECC with multiple AMR mechanisms mandates close monitoring of nosocomial infections caused by these isolates to forestall the transmission and dissemination of AMR.IMPORTANCEThe emergence and extensive dissemination of the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) have positioned it as a critical nosocomial global pathogen. The dearth of a comprehensive molecular study pertaining to CR-ECC necessitated this study, which is the first of its kind from India. Characterization of blood isolates of CR-ECC over the last 6 years revealed Enterobacter hormaechei subsp. xiangfangensis as the most prevalent subsp., exhibiting resistance to almost all antibiotics currently in use and harboring diverse transmissible carbapenemase genes. Besides the predominating blaNDM-1 and blaCTX-M-15, we document diverse carbapenemase and AmpC genes, such as blaNDM-4, blaNDM-7, blaOXA-181, blaOXA-232, blaKPC-3, blaCMH-3, blaSFO-1, and blaDHA-7, in CR-ECC, which were not previously reported from India. Furthermore, novel integrons and sequence types were identified. Our findings emphasize the need for strengthened vigilance for molecular epidemiological surveillance of CR-ECC due to the presence of epidemic clones with a phylogenetically diverse and wide array of antimicrobial resistance genes in vulnerable populations.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacter cloacae , Enterobacter , Humans , Enterobacter cloacae/genetics , Multilocus Sequence Typing , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Plasmids/genetics , Intensive Care Units , Carbapenems/pharmacology , Microbial Sensitivity Tests
5.
Sci Total Environ ; 920: 170635, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38340846

ABSTRACT

Considerable attention is given to intensive care unit-acquired infections; however, research on the transmission dynamics of multichain carbapenemase-resistant Enterobacter cloacae complex (CRECC) outbreaks remains elusive. A total of 118 non-duplicated CRECC strains were isolated from the clinical, intestinal, and hospital sewage samples collected from Zhejiang province of China during 2022-2023. A total of 64 CRECC strains were isolated from the hospital sewage samples, and their prevalence increased from 10.0 % (95 % confidence interval, CI = 0.52-45.8 %) in 2022 to 63.6 % (95 % CI = 31.6-87.6 %) in 2023. Species-specific identification revealed that Enterobacter hormaechei was the predominant CRECC species isolated in this study (53.4 %, 95 % CI = 44.0-62.6 %). The antimicrobial susceptibility profiles indicated that all 118 CRECC strains conferred high-level resistance to ß-lactam antibiotics, ceftacillin/avibactam, and polymyxin. Furthermore, all CRECC strains exhibited resistance to ß-lactams, quinolones, and fosfomycin, with a higher colistin resistance rate observed in the hospital sewage samples (67.2 %, 95 % CI = 54.2-78.1 %). Several antibiotic resistance genes were identified in CRECC strains, including Class A carbapenemases (blaKPC-2) and Class B carbapenemases (blaNDM-1/blaIMP), but not Class D carbapenemases. The WGS analysis showed that the majority of the CRECC strains carried carbapenemase-encoding genes, with blaNDM-1 being the most prevalent (86.9 %, 95 % CI = 77.4-92.9 %). Furthermore, sequence typing revealed that the isolated CRECC strains belonged to diverse sequence types (STs), among which ST418 was the most prevalent blaNDM-positive strain. The high risk of carbapenemase-producing ST418 E. hormaechei and the blaNDM-harboring IncFIB-type plasmid (81.4 %, 95 % CI = 72.9-87.7 %) were detected and emphasized in this study. This study provides valuable insights into the prevalence, antimicrobial resistance, genomic characteristics, and plasmid analysis of CRECC strains in diverse populations and environments. The clonal relatedness analysis showed sporadic clonal transmission of ST418 E. hormaechei strains, supporting inter-hospital transmission.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacter cloacae , Enterobacter cloacae/genetics , Carbapenems/pharmacology , Sewage , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Plasmids , Carbapenem-Resistant Enterobacteriaceae/genetics , China/epidemiology , Microbial Sensitivity Tests
6.
Sci Total Environ ; 914: 170002, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38220024

ABSTRACT

The motility behaviors at the individual-cell level and the collective physiological responsive behaviors of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress were investigated. The results revealed that as salinity increased, electron transport activity and adenosine triphosphate content decreased from 15.75 µg O2/g/min and 593.51 mM/L to 3.27 µg O2/g/min and 5.34 mM/L, respectively, at 40 g/L, leading to a reduction in the rotation velocity and vibration amplitude of strain HNR. High salinity stress (40 g/L) down-regulated genes involved in ABC transporters (amino acids, sugars, metal ions, and inorganic ions) and activated the biofilm-related motility regulation mechanism in strain HNR, resulting in a further decrease in flagellar motility capacity and an increase in extracellular polymeric substances secretion (4.08 mg/g cell of PS and 40.03 mg/g cell of PN at 40 g/L). These responses facilitated biofilm formation and proved effective in countering elevated salt stress in strain HNR. Moreover, the genetic diversity associated with biofilm-related motility regulation in strain HNR enhanced the adaptability and stability of the strain HNR populations to salinity stress. This study enables a deeper understanding of the response mechanism of aerobic denitrifiers to high salt stress.


Subject(s)
Enterobacter cloacae , Salt Stress , Enterobacter cloacae/genetics , Biofilms , Extracellular Polymeric Substance Matrix , Ions , Stress, Physiological
7.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(1): 48-55, 2024 Jan 06.
Article in Chinese | MEDLINE | ID: mdl-38228549

ABSTRACT

Objective: To investigate the drug-resistant gene characteristics and core genome characteristics of carbapenem-resistant Enterobacter cloacae (CR-ECL) in rural residents of Weifang City, Shandong Province. Methods: Fecal samples were collected from rural community residents in Weifang City, Shandong Province in 2017. Drug-resistant strains were screened using a carbapenem-resistant enterobacter chromogenic medium. CR-ECL positive strains were acquired via Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry(MALDI-TOFMS) analysis. The antibiotic resistance phenotype of CR-ECL was determined using a microbroth dilution assay. Whole genome sequencing (WGS) and analysis were conducted, along with an examination of the immediate vicinity of the blaNDM gene and phylogenetic analysis of the strains. Results: A total of 628 fecal samples were collected and tested, of which 6 were CR-ECL positive (detection rate 0.96%), all exhibiting multiple drug resistance (MDR) phenotypes. Six CR-ECL strains had four MLST genotypes (ST), all of which carried multiple drug resistance genes (blaNDM-1, blaNDM-5, etc.) and virulence genes (acrA, acrB, entB, fepC, etc.). There were mobile genetic elements ISAba125, TN3-IS3000, TN3 and IS5 in the genetic environment surrounding the blaNDM gene. The phylogenetic tree showed that the multi-locus sequence typing of the core genome (cgMLST) was consistent with the single nucleotide polymorphism (SNPs) results. The cgMLST results showed that the allele differences between strains 2BC0101B and 2BC0251B, 2BG0561B and 2BI0221B were 2 and 1, respectively. The SNPs results showed that the above two pairs of bacteria also clustered together. It was found that the strains of chicken fecal samples in the National Center for Biotechnology Information (NCBI) database were located in the center of the evolutionary tree, and the local sequences could be traced back to American human sequences. Conclusion: Multidrug-resistant CR-ECL is detected in rural community residents in Weifang City, Shandong Province.


Subject(s)
Anti-Bacterial Agents , Enterobacter cloacae , Humans , Anti-Bacterial Agents/therapeutic use , Enterobacter cloacae/genetics , Multilocus Sequence Typing , beta-Lactamases/genetics , Phylogeny , Rural Population , Carbapenems/pharmacology , Microbial Sensitivity Tests
8.
Microbiol Spectr ; 12(2): e0185523, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38230935

ABSTRACT

This study describes the identification of the mcr-10.1 gene in a clinical isolate of an ST1 Enterobacter cloacae isolate cultured in 2015 in Kenya. The isolate was multidrug resistant, phenotypically non-susceptible to various antibiotics, including colistin. Whole genome sequence analyses indicated carriage of chromosomally encoded antimicrobial resistance genes and the colistin-resistant gene mcr-10.1 located on a 72-kb plasmid designated pECC011b with an IncFIA(HI1) replicon directly adjacent to tyrosine recombinase gene, xerC, and downstream of an ISKPn26 insertion sequence. Studies have shown that expression of mcr-10.1 may not be sufficient to confer colistin resistance, but a novel non-synonymous mutation (S244T) was identified in the phoQ gene known to influence colistin resistance within lipid modification pathways, which could have complemented the mcr-10.1 resistance mechanism. In silico analysis of the mutant phoQ protein shows the location of the mutation to be at the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) region, which plays a crucial role in the protein's activity. This study and our previous report of mcr-8 in Klebsiella pneumoniae indicate the presence of mobile mcr genes in the Enterobacterales order of bacteria in Kenya. The study points to the importance of regulation of colistin in the animal industry and enhancing surveillance in both human and animal health to curb the spread of mcr genes and accurately assess the risks posed by these mobile genetic elements in both sectors.IMPORTANCEThis paper reports the detection of new colistin resistance mechanisms in Kenya in a clinical isolate of Enterobacter cloacae in a patient with a healthcare-associated infection. The plasmid-mediated resistance gene, mcr-10.1, and a novel amino acid mutation S244T in the phoQ gene, located in a region of the protein involved in membrane cationic stability contributing to colistin resistance, were detected. Colistin is a critical last-line drug for multidrug-resistant (MDR) gram-negative human infections and is used for treatment and growth promotion in the animal industry. The emergence of the resistance mechanisms points to the potential overuse of colistin in the animal sector in Kenya, which enhances resistance, threatens the utility of colistin, and limits treatment options for MDR infections. This study highlights the need to enhance surveillance of colistin resistance across sectors and strengthen One Health policies that ensure antimicrobial stewardship and implementation of strategies to mitigate the spread of antibiotic resistance.


Subject(s)
Colistin , Enterobacter cloacae , Animals , Humans , Enterobacter cloacae/genetics , Kenya , Anti-Bacterial Agents/pharmacology , Plasmids , Mutation , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
9.
Fish Shellfish Immunol ; 144: 109279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072137

ABSTRACT

Toll/Toll-like receptor (TLR) is an important pattern recognition receptor that plays an important role in the immunity of animals. Six Toll genes were identified in Macrobrachium rosenbergii, namely, MrToll, MrToll1, MrToll2, MrToll3, MrToll4, and MrToll5. SMART analysis showed that all six Tolls have a transmembrane domain, a TIR domain, and different number of LRR domains. The phylogenetic tree showed that six Tolls were located in six different branches. Among these six Tolls, only MrToll4 contains the QHR motif, which is similar to insect Toll9. MrToll4 belongs to V-type/scc Toll with only one LRRCT domain. MrToll1 and MrToll5 are classical P-type/mcc Toll with two LRRCT domains and an LRRNT. MrTolls were distributed in the hemocytes, heart, hepatopancreas, gills, stomach, and intestine. During the infection of Enterobacter cloacae, the expression level of MrToll and MrToll1-4 was upregulated in the intestine of M. rosenbergii. RNA interference experiments showed that the expression of most antimicrobial peptide (AMP) genes was negatively regulated by MrTolls during E. cloacae infection. On the contrary, crustin (Cru) 3 and Cru4 were inhibited after the knockdown of MrToll, and Cru1 and Cru4 were significantly downregulated with the knockdown of MrToll4 during E. cloacae challenge. These results suggest that MrTolls may be involved in the regulation of AMP expression in the intestine during E. cloacae infection.


Subject(s)
Palaemonidae , Animals , Enterobacter cloacae/genetics , Phylogeny , Base Sequence , Amino Acid Sequence , Toll-Like Receptors/genetics , Antimicrobial Peptides , Arthropod Proteins , Immunity, Innate/genetics
10.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38054968

ABSTRACT

Gram-negative bacteria use type VI secretion systems (T6SSs) to antagonize neighbouring cells. Although primarily involved in bacterial competition, the T6SS is also implicated in pathogenesis, biofilm formation and ion scavenging. Enterobacter species belong to the ESKAPE pathogens, and while their antibiotic resistance has been well studied, less is known about their pathogenesis. Here, we investigated the distribution and diversity of T6SS components in isolates of two clinically relevant Enterobacter species, E. cloacae and E. bugandensis. T6SS clusters are grouped into four types (T6SSi-T6SSiv), of which type i can be further divided into six subtypes (i1, i2, i3, i4a, i4b, i5). Analysis of a curated dataset of 31 strains demonstrated that most of them encode T6SS clusters belonging to the T6SSi type. All T6SS-positive strains possessed a conserved i3 cluster, and many harboured one or two additional i2 clusters. These clusters were less conserved, and some strains displayed evidence of deletion. We focused on a pathogenic E. bugandensis clinical isolate for comprehensive in silico effector prediction, with comparative analyses across the 31 isolates. Several new effector candidates were identified, including an evolved VgrG with a metallopeptidase domain and a Tse6-like protein. Additional effectors included an anti-eukaryotic catalase (KatN), M23 peptidase, PAAR and VgrG proteins. Our findings highlight the diversity of Enterobacter T6SSs and reveal new putative effectors that may be important for the interaction of these species with neighbouring cells and their environment.


Subject(s)
Enterobacter cloacae , Type VI Secretion Systems , Enterobacter cloacae/genetics , Type VI Secretion Systems/genetics , Peptide Hydrolases
11.
Microbiol Spectr ; 11(6): e0106323, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37909761

ABSTRACT

IMPORTANCE: Plasmid-mediated mobile colistin-resistance genes have been recognized as a global threat because they jeopardize the efficacy of colistin in therapeutic practice. Here, we described the genetic features of two mcr-9.1-carrying Gram-negative bacteria with a colistin-resistant phenotype derived from vegetables in Japan. The colistin-resistant mcr-9.1, which has never been detected in vegetables, was located on a large plasmid in Enterobacter cloacae CST17-2 and Raoultella ornithinolytica CST129-1, suggesting a high chance of horizontal gene transfer. To the best of our knowledge, this is the first report of mcr-9 in R. ornithinolytica. This study indicates that fresh vegetables might be a potential source for the transmission of mcr-9 genes encoding resistance to frontline (colistin) and clinically relevant antimicrobials. The study also provides additional consideration for colistin use and the relevance of routine surveillance in epidemiological perspective to curb the continuous spread of mcr alleles.


Subject(s)
Colistin , Enterobacter cloacae , Colistin/pharmacology , Enterobacter cloacae/genetics , Anti-Bacterial Agents/pharmacology , Vegetables/microbiology , Japan , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Transferases/genetics , Microbial Sensitivity Tests
12.
J Appl Microbiol ; 134(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37804178

ABSTRACT

AIM: Carbapenem resistance among Enterobacteriaceae is a serious threat to humans worldwide. This study aims to evaluate the phenotypic and genotypic characterization of carbapenemase-producing Enterobacter cloacae complex (ECC) retrieved from water sources in the central part of Thailand. METHODS AND RESULTS: Samples were collected from water bodies surrounding farms and communities in central Thailand. The species were identified by using MALDI-TOF MS. The minimum inhibitory concentration (MIC) and antibiotic susceptibility were determined. The carbapenemase-producing genes were detected by PCR and whole genome sequencing (WGS). ECC with chromosome-encoded blaIMI-1 carbapenemase were detected. These isolates were resistant to last-resort antibiotics such as carbapenems and colistin as well as penicillin. In addition, all blaIMI-1 genes isolated from this study were found to be associated with chromosomally integrated Xer-dependent integrative mobile elements (IMEXs). CONCLUSION: These findings highlight the diversity and dissemination of carbapenemases-producing Enterobacterales in environmental sources. With the increasing detection of carbapenemase genes worldwide, we should be aware of the blaIMI-producing E. cloacae complex with a high resistance profile and the ability to mobilize within the environment.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Humans , Enterobacter cloacae/genetics , Thailand , Water , beta-Lactamases/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Genomics , Microbial Sensitivity Tests
13.
J Infect Dev Ctries ; 17(9): 1300-1309, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37824354

ABSTRACT

INTRODUCTION: The spread of multidrug-resistant bacteria, particularly carbapenem-resistant Gram-negative bacilli (CR-GNB), has become a serious challenge for clinicians due to limited therapeutic options. The aim of the study was to investigate the prevalence of carbapenemase production among clinical isolates recovered from 352 samples collected in Tebessa hospital, Algeria. METHODOLOGY: Bacterial isolates were identified by 16S RNA gene sequencing and susceptibility to antibiotics was determined by disk diffusion method. Carbapenem-resistant isolates were screened for carbapenemase production using modified carba Nordmann-Poirel test, modified Hodge test and imipenem-EDTA combined disc test. Extended-spectrum ß-lactamases (ESBL) were detected using double-disk synergy test. Molecular characterization of carbapenemases and ESBL genes was performed by polymerase chain reaction (PCR) and sequencing. RESULTS: A total of 85 Gram-negative bacilli isolates were recovered mainly from urine samples and were identified as: Klebsiella pneumoniae (17.65%), Serratia odorifera (15.29%), Escherichia coli (12.94%), Raoultella ornithinolytica, Enterobacter cloacae (11.76%), Serratia marcescens (10.59%), Morganella morganii (7.06%), Proteus mirabilis (5.88%), Acinetobacter baumannii (4.70%) and Pseudomonas aeruginosa (2.35%). All strains were resistant or intermediate to imipenem and/or ertapenem. ESBL, carbapenemase and metallo-beta-lactamases (MBL) phenotypes were detected in 19 (22.35%), 9 (10.59%) and 2 (2.35%) GNB isolates, respectively. PCR results in nine carbapenemase-producing GNB strains chosen showed the presence of one to four carbapenemase genes (blaGES, blaSME, blaNDM-1, blaVIM, blaGIM, blaSPM, blaOXA-48) in four strains; however, seven strains had at least one ESBL gene (blaTEM-1, blaCTXM-15, blaSHV). CONCLUSIONS: In this study, we report the first incidence of blaNDM-1 gene in Enterobacter cloacae isolated from urine sample in Algeria.


Subject(s)
Enterobacter cloacae , beta-Lactamases , Enterobacter cloacae/genetics , beta-Lactamases/genetics , beta-Lactamases/analysis , Bacterial Proteins/genetics , Bacterial Proteins/analysis , Gram-Negative Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems , Imipenem/pharmacology , Escherichia coli , Microbial Sensitivity Tests
14.
Biochem Biophys Res Commun ; 682: 187-192, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37820454

ABSTRACT

d-Allose is an aldohexose of the C3-epimer of d-glucose, existing in very small amounts in nature, called a rare sugar. The operon responsible for d-allose metabolism, the allose operon, was found in several bacteria, which consists of seven genes: alsR, alsB, alsA, alsC, alsE, alsK, and rpiB. To understand the biological implication of the allose operon utilizing a rare sugar of d-allose as a carbon source, it is important to clarify whether the allose operon functions specifically for d-allose or also functions for other ligands. It was proposed that the allose operon can function for d-ribose, which is essential as a component of nucleotides and abundant in nature. Allose-binding protein, AlsB, coded in the allose operon, is thought to capture a ligand outside the cell, and is expected to show high affinity for the specific ligand. X-ray structure determinations of Enterobacter cloacae AlsB (EtcAlsB) in ligand-free form, and in complexes with d-allose, d-ribose, and d-allulose, and measurements of the thermal parameters of the complex formation using an isothermal titration calorimeter were performed. The results demonstrated that EtcAlsB has a unique recognition mechanism for high affinity to d-allose by changing its conformation from an open to a closed form depending on d-allose-binding, and that the binding of d-ribose to EtcAlsB could not induce a completely closed form but an intermediate form, explaining the low affinity for d-ribose.


Subject(s)
Carrier Proteins , Monosaccharides , Carrier Proteins/metabolism , Enterobacter cloacae/genetics , Enterobacter cloacae/metabolism , X-Rays , Ligands , Ribose/metabolism , Glucose/metabolism
16.
J Appl Microbiol ; 134(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37715332

ABSTRACT

AIMS: The present study was aimed to detect clinically relevant carbapenemase encoding genes in carbapenem-resistant Enterobacter cloacae complex (CR-ECC), Klebsiella pneumoniae (CR-KP), and Serratia plymuthica (CR-SP) isolated from farmed freshwater fish. METHODS AND RESULTS: Out of 243 spatially diverse freshwater fish samples analysed, 5.3% were contaminated with CR-ECC, 1.6% with CR-KP, and 0.4% with CR-SP. The CR-ECC was further identified as E. asburiae (38.5%), E. mori (23.1%), E. cloacae (15.4%), E. hormaechei (15.4%), and E. kobei (7.7%) by 16S rRNA gene sequencing. The CR-ECC were resistant to carbapenems and cefoxitin, whereas CR-KP and CR-SP were multi-drug resistant (MDR). The CR-ECC harboured the carbapenemase gene blaIMI alone or in combination with blaTEM, blaEBC, blaCIT, blaACC, and tet(E). Whereas, CR-KP harboured carbapenemase gene, blaNDM-5 along with blaOXA-48, blaSHV, blaOXA-1, blaCTX-M-15, tet(A), sul1, and qnrB. No carbapenemase-encoding genes were detected in CR-SP. The MLST analysis showed that CR-KP belonged to ST231 and ST1561 lineages, while CR-ECC did not show exact match with any reported STs. The plasmid replicons predominantly detected were IncF and IncI1. Broth mating assays of CR-KP and CR-ECC with recipient Escherichia coli J53 indicated that blaNDM-5 was transferable but not blaIMI. CONCLUSION: This study highlights the low-level contamination of carbapenem-resistant Enterobacterales (CRE) harbouring clinically relevant carbapenemase-encoding genes in farmed freshwater fish from India. The CR-ECC of fish origin did not show the potential to spread carbapenem resistance.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , Enterobacter cloacae/genetics , Multilocus Sequence Typing , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Escherichia coli/genetics , Microbial Sensitivity Tests
17.
Microb Pathog ; 183: 106291, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37557932

ABSTRACT

Enterobacter cloacae is a member of the Enterobacter family, which could prevent Macrobrachium rosenbergii from growing and cause mass mortality. However, no research has focused on microRNA immunity in M. rosenbergii infected with E. cloacae. To clarify the immune response mechanisms, transcriptomic analysis was performed on the miRNAs of M. rosenbergii infected with E. cloacae YZ3 strain. Following quality screening, 10,616,712 clean reads were obtained from the control group and 12,726,421 from the infected group. Among 899 known miRNAs, 446 differentially expressed miRNAs (DEMs) were identified. Meanwhile, 59 novel miRNAs were predicted, along with 39 DEMs. Target genes of DEMs have been predicted in order to gain a deeper understanding of the immune-related functions. GO and KEGG pathway analysis revealed the biological functions and signaling pathways of target genes. The results indicated that E. cloacae significantly affected the NOD-like receptor, RIG-I-like receptor and Toll-like receptor pathways. Ten DEMs were randomly selected, and their expression level was verified by Quantitative Real-time PCR technology. Overall, this study highlights the influential role of miRNAs in the innate immune system of M. rosenbergii, which has important implications for developing new strategies to prevent and treat related diseases in the future.


Subject(s)
MicroRNAs , Palaemonidae , Animals , Transcriptome , Palaemonidae/genetics , Enterobacter cloacae/genetics , Gene Expression Profiling , Immunity , MicroRNAs/genetics , MicroRNAs/metabolism
18.
BMC Microbiol ; 23(1): 177, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407923

ABSTRACT

BACKGROUND: The increasing incidence and prevalence of carbapenem-resistant Enterobacter cloacae complex (CREC) poses great challenges to infection prevention and disease treatment. However, much remains unknown about the clinical characteristics of CREC isolates. Our objective was to characterize antimicrobial resistance and, carbapenemase production in CREC with 36 CREC isolates collected from a tertiary hospital in Shandong, China. RESULTS: Three types of carbapenemases (NDM, IMP and VIM) were detected in these isolates. Among them, NDM carbapenemases were most prevalent, with a 61.2% (22/36) detection rate for NDM-1, 27.8% (10/36) for NDM-5 and 2.8% (1/36) for NDM-7. IMP-4 was found in two isolates and VIM-1 in only one isolate. The MLST analysis identified 12 different sequence types (STs), of which ST171 (27.8%) was the most prevalent, followed by ST418 (25.0%). ST171 isolates had significantly higher rates of resistance than other STs to gentamicin and tobramycin (Ps < 0.05), and lower rates of resistance to aztreonam than ST418 and other STs (Ps < 0.05). Among 17 carbapenemase-encoding genes, the blaNDM-5 gene was more frequently detected in ST171 than in ST418 and other isolates (Ps < 0.05). In contrast, the blaNDM-1 gene was more frequently seen in ST418 than in ST171 isolates. One novel ST (ST1965) was identified, which carried the blaNDM-1 gene. CONCLUSION: NDM-5 produced by ST171 and NDM-1 carbapenemase produced by ST418 were the leading cause of CREC in this hospital. This study enhances the understanding of CREC strains and helps improve infection control and treatment in hospitals.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Humans , Enterobacter cloacae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Tertiary Care Centers , Multilocus Sequence Typing , Enterobacteriaceae Infections/epidemiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , China/epidemiology , Microbial Sensitivity Tests
19.
Curr Microbiol ; 80(7): 233, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37273073

ABSTRACT

Enterobacter cloacae exhibits strong adhesion and invasion properties that contribute its ability to infect the host; it is considered an important opportunistic pathogen throughout the world. To control the spread of E. cloacae, simple, rapid, and accurate detection methods are required. Current methods suffer from various shortcomings and do not meet the demand for on-site quickly detection. Using recombinase polymerase amplification combined with lateral flow strip (RPA-LFS), an isothermal detection method was developed to target the outer membrane protein X (ompX) gene of E. cloacae. This reaction can be performed in 30 min at 37 °C. Limit of detection of 10 CFU/reaction was equivalent to that of the qPCR method. The detection accuracy of clinical samples was also equal to that of the qPCR method. In this study, we developed the RPA-LFS assay, which is simple, rapid, accurate, and does not require a laboratory facility. This assay may prove useful for detecting E. cloacae on-site.


Subject(s)
Nucleic Acid Amplification Techniques , Recombinases , Recombinases/genetics , Nucleic Acid Amplification Techniques/methods , Enterobacter cloacae/genetics , Sensitivity and Specificity
20.
Food Environ Virol ; 15(3): 236-245, 2023 09.
Article in English | MEDLINE | ID: mdl-37306924

ABSTRACT

Enterobacter cloacae is a widespread opportunistic pathogen that causes urinary tract infection. The abuse of antibiotics enabled multidrug-resistant strains to spread. Bacteriophage therapy is a naturally, safe, and efficient alternative treatment technology against multi-resistant bacteria. In this study, a virulent phage vB_EclM_Q7622 (Q7622) was isolated from the sewage of Jiangcun poultry market in Guangzhou city. Transmission electron microscopy indicated that Q7622 had an icosahedral head (97.8 ± 5.6 nm in diameter) and a short, contractile tail (113.7 ± 4.5 nm). Its double-stranded DNA genome is composed of 173,871 bp with a GC content of 40.02%. It possesses 297 open reading frames and 9 tRNAs. No known virulence and resistance genes were detected, indicated that phage Q7622 could be used for pathogens prevention and control safely. Comparative genomic and phylogenetic analysis showed that Q7622 was highly similar to the phages vB_EclM_CIP9 and vB_EhoM-IME523. The highest nucleotide similarity between Q7622 and the similar phages in NCBI calculated by pyANI and VIRIDIC were 94.9% and 89.1% with vB_EhoM-IME523 respectively, below 95%. Thus, according to the result of nucleotide similarity calculation results, Q7622 was a novel virulent Enterobacter cloacae phage strain of the genus Kanagawavirus.


Subject(s)
Bacteriophages , Enterobacter cloacae , Enterobacter cloacae/genetics , Phylogeny , Genome, Viral , Bacteriophages/genetics , Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...